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ABSTRACT
. Design for Testability (DFT) is receiving major emphasis
in the VSLI design field due to increasing circuit
complexity. The utility of the silicon compiler and its
value to a system designer without extensive VLSI design
experience 1is discussed. Two major techniques for DFT,
Scanpath Design and Built-in Test Design, are implemented
using the Genesil silicon compiler. The basic building
block, the shiftable test latch, is described in random logic
block form and parallel datapath form. Linear feedback shift

registers used as random vector generators and signature

analyzers are used in the Built-in Test design. An Automatic
Test Generation (ATG) program is used to provide a measure of
fault coverage for the two DFT techniques. The Appendix is a
brief tutorial illustrating the use of the Genesil system's

shiftable test latch in its different configurations.
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I. INTRODUCTION

A. BACKGROUND

VLSI (Very Large Scale Integrated) circuit technology has
resulted in the dramatic increase in the circuit density
(number of components, gates, circuits or memory bits)
contained within a single chip. Along with the increase in
the number of circuits has come a corresponding increase in
the complexity of circuit testing. VLSI circuits are
technical products and it is important for the user to know
if the device "works" from a physical standpoint as well as a
functional one. There are two questions that arise that
provide the impetus for physical testing of a device:

o Does the device work?

o Will it continue to work?
These questions determine the availability and the
reliability of the chip or system in question.

There is also a third question: "Is it affordable?" that
determines the cost effectiveness of the device. The
question of cost effectiveness is an important one given the
fact that the increasing complexity of VLSI components has
resulted in a trend of higher testing costs. It 1is
conceivable that some circuits are so complex that testing
them by conventional methods might itself be prohibitive and
an otherwise good design might not go into production because
there is no way to determine convincingly its reliability.

1




Testing, in a general sense, means to examine a product to
ensure that it functions correctly and exhibits the
properties and characteristics that it was designed to
possess [Ref. 1l:p. 13].

VLSI technology has introduced complexity into the
testing of integrated circuits in two important ways. First,
the circuits have become so 1large and complicated that
testing cannot be done by an individual. This has made
planning and designing for testing more difficult. Computer-
aided tools are one solution to this problem. Second,
integrated circuits have become so fast and compact as well
as being largely inaccessible that new methods of testing are
required. Accessibility refers to the ease at which the
inte-rnal nodes of a device are made available to a testing
procedure for control and observation. New methods of
testing required to deal with the increase in complexity lead
to increases in cost.

Testing consists of supplying a stimuli to the circuit
under test and obtaining and comparing its responses to the
expected responses. The rapid growth of VLSI circuits has
led to a new industry and technology, heavily dependent on
the computer to aid in testing. This is the Automatic Test
Equipment (ATE) industry. ATE generate test patterns, supply
the test patterns to the object under test, obtain the output
responses, and compare the response patterns to predicted

behavior. Despite the growth of the ATE industry, LSI and




VLSI testing has continued to become more difficult and
costly.

Conventional testing, as defined by F. Tsui [Ref. 1l:p.
48], 1is testing that relies primarily on adding improved
mechanical means for testing and not on the addition of logic
within the design. Design for Testability (DFT), on the
other hand, by relying on the addition of logic to facilitate
testing, can be considered to be electronic in nature vice
mechanical and an integral part of system design.

Conventional testing has three characteristics that
differentiate it from DFT:

© Conventional methods cannot test parts in-system. Com-
ponent testing must be done in isolation from the rest of
the system.
o Conventional methods rely on test equipment to supply
test patterns and capture the output response.
¢ Conventional mcthods require tester-driven timing. The
timing control originates from the test equipment and is
not considered part of the system timing.
Because of the increasing circuit integration and speeds of
VLSI design, conventional test methods have become
inadequate. The chief reason is that the methods rely on
feeding the signals through some sort of test-interface.
With the increasing density of the «circuits, more
input/output (I/0) pins are required for the normal operation

of the chip. However, due to technology constraints, the




miniaturization of the I/0 pads has not kept pace with the
rate of increasing density within the core of the chip.
Thus, the number of I/O pins available for testing has
decreased. Also, as the physical size of the chips has
decreased, so has the ratio of periphery to surface area
resulting in less area available for an increasing number of
pins. The use of a test-interface also contributes noise and
some signal distortion that might affect the successful
implementation of a test.

As mentioned above, although the per-chip fabrication and
assembly costs have decreased rapidly as the technology has
matured, testing costs have not been reduced. Conseguently,
as a percentage of the total cost of a product, the cost of
testing has continually increased [Ref. 1: p. 15]. Costs of
testing include test equipment (hardware), test generation
which reflects costs in both test pattern generation and
verification, testing time, and testing personnel. The goal
of Design for Testability (DFT) is to find ways to make
testing easier, more efficient, and 1less costly. It is
believed that through the incorporation of testability design
from the very beginning of a design project, testing can be
made more economical and effective. DFT adds circuits to the
object to be designed in order to make it easier to test.
These circuits add to the observability and controllability

of the system.




Controllability refers to the ease by which a specific
signal can be produced at some internal node of a design by
applying a signal to the inputs of the design. Observability
refers to the ease by which the state of an internal node can
be determined at the outputs of the design [Ref. 2:p. 100].
These two concepts are important in understanding circuit
characteristics that determine testability. This 1is the
chief aim of the work done in this thesis, to demonstrate
Design for Testability as it is implemented by the devices
available through the Genesil Silicon Compiler, hereafter
referred to simply as Genesil.

Testing, at the integrated circuit level, mainly involves
combinational 1logic. Most digital systems are built with
mixtures of combinational networks and latches. Latches are
difficult to test because they are sequential in nature and
the feedback 1loops inherent in sequential devices are
difficult to test. A fault in a sequential circuit would
require a sequence of test patterns or vectors to detect it.
The method that Genesil uses to handle sequential circuits,
time unrolling, will be discussed in Chapter V.

With VLSI circuits becoming more inaccessible, DFT
provides ways of gaining access to the interior of the
circuit to facilitate testing. The focus of this thesis is
to demonstrate the incorporation of additional circuitry
within the framework of the design in order to increase

testability. Testability can be defined as the capability to




examine whether an object is "fault-free". We achieve

testability through increasing the controllability and
observability of a circuit.

The goal in testing is not necessarily to discover the
exact physical failures, often merely detecting the existence
of those failures is enough, since it may be that the
location of the fault is not necessarily important. In order
to detect a fault within a circuit, a sequence of test
patters (vectors) is applied to the circuit and the results
are compared with those known to belong to a good circuit.

Any difference implies that fault(s) are detected by the
test pattern. The total number of faults that can be
detected as compared to the total number of possible faults
is the fault coverage. Physical failures are due to either
manufacturing defects or wear-out in the field. Failures
occurring during manufacture might include faulty
transistors, breaks in 1lines at some level (polysilicon,
metal, diffusion, etc.), and shorts between levels and among
levels. Devices in the region of a failure will also be
affected. Alignment errors, mask failures, and problems with
the 1lithographic techniques vital to the successful
manufacture of a VLSI circuit all contribute to physical
failure. They result in pinholes in the oxide, faulty
contacts, and defective devices. Improper handling can
result in input gate breakdown due to static electricity.

Moisture in the packaging of the circuit can lead to failure.




Long term failures result from breaks in lines and shorts
between 1lines. The aluminum metal can start to corrode.
High current densities in thin wires can result in metal
migration. As the technology ages and existing problems are
corrected, new ones will evolve and this further complicates
the generation of accurate fault models.

A fault model is used to describe the effect of a
physical failure on the performance of the device. A stuck-
at fault model describes the effect of a physical failure
that results in the inputs or outputs of logic gates being
permanently stuck at logic 0 or 1. A bridging fault model
describes shorts between lines at the 1logic level of the
circuit. There are also stuck-open fault models. Many
physical failures can be described by the single stuck-at
fault model. There are also multiple stuck-at fault models.

Figure 1 shows a simple CMOS inverter constructed of a p-
channel transistor and an n-channel transistor. A logic 1 at
the input causes the n-channel transistor to conduct bringing
the output close to ground or 0. A logic 0 causes the p-
channel transistor to conduct bringing the output to be
"pulled-up" to a VDD or logic 1. If the inverter is faulty
(i.e., has an open line, short between lines, or a failed
transistor) what can happen? If the input is shorted to
ground (0) then the gate output is permanently at logic 1,
the p-channel transistor 1is always on. The same thing

happens if there is a break in the line at A, once any




residual charge has leaked out of the p-channel transistor.
If the line is broken at B, the input of a logic 0 will cause
the expected output. However, if the input is at logic 1,
the p-channel transistor will turn off, but since the line is
broken, the n-channel transistor will never turn on and the
output will remain at a logic 1 for a period of time
dependent on the leakage currents, usually milliseconds. 1If
a constant stream of data is being input to the device, the
output will look like a steady logic 1, hence stuck-at-one.

A more complex fault will result if one of the
transistors has failed. If the n-channel transistor, for
example, were to fail permanently in the logic 1 state, a
logic 1 applied to the input would not result in any error.
If, however, a logic 0 were applied, both transistors would
conduct, leaving the output at some intermediate value

between VDD and 0.




VDD

——4 p~-channel

output

A

input — 3¢ I n-channe

Figure 1. CMOS Inverter Fault Model

Consider the simple NOR gate shown in Figure 2. If there
is a break at point C just before the n-channel transistor,
the output should normally be logic 0 for A equal to logic 0
and B equal to logic 1. As a result of the failure at C,
there is no path for either VSS or VDD to the output.
Consequently, the «circuit 1is floating and retains its
previous value. The output can be forced to logic 0 by
setting A to logic 1 and to logic 1 by setting both A and B
to logic 0. The point is that the circuit retains the memory
of its previous state and has, therefore, become sequential
in nature. This is the stuck-open fault first described by

R.L. Wadsak in 1978 [Ref. 3]. The failure would be detected




by forcing the output to a logic 1 (A,B = 0) and then setting
B to logic 1; the output would not change if there was a
break at C. It is important to note that not all circuits
can be described by the fault models described above. Models
of functional blocks of logic include shorts between lines in
addition to the stuck-at fault models. A short between two
lines results in the two lines having the OR or AND of their
correct values, depending on the technology used in the
device (CMOS technology results in an OR function, NMOS in an
AND function). The goal here 1is not to provide a
comprehensive guide to faults but to provide a basic
understanding of the effects of some of the physical failures

and how they relate to fault models used in testing.

vDD

: -+
: -

o L

output

Figure 2. CMOS NOR Gate Fault Model
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B. SILICON COMPILATION AND ASIC DESIGN

The device used as the basic test platform in this thesis
is a versatile 16-bit correlator. It is a good example of an
application-specific integrated circuit, commonly referred to
as an ASIC. ASICs have become very popular in military
systems due to factors of integration and customization.
Avionics systems, for example, require high integration due
to size and weight constraints. Other systems, such as those
used for communication or targeting, require devices that are
high-performance, very specialized, or both. Traditional
methods of ASIC design include full-custom design, gate-
array circuit design, and standard cell circuit design [Ref.
4:p. 38]. Silicon compilation is the newest method of ASIC
design and allows the designer a higher degree of flexibility
and feedback than previously available. The silicon compiler
works from a high-level description of the circuit that
allows the designer to perform successive design iterations
quickly and efficiently, providing the designer rapid access
to key parameters such as chip size, power consumption, and
timing constraints.

The Genesil silicon compiler used at the Naval
Postgraduate School in Monterey is particularly effective in
that it allows the system designer with little IC design
expertise to quickly and effectively create workable
circuits. Because of the breadth of the compiler library,

including relatively complex circuits such as random access
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memory (RAM), read only memory (ROM), programmable logic
arrays (PLA), arithmetic logic units (ALU), multipliers, and
a host of less complex circuits such as basic logic gates and
data-path elements, the designer does not have to design at
the transistor level, and in fact, requires little knowledge
of this level of VLSI. Figure 3 shows the configuration of

the Genesil system at NPS.

=

Seiko Color Hardcopier

Hewlett-Packard Plotter
*& PRINTRONIX Line Printer
Imagen Laser Printer

Seiko Terminal VAX-11/785 Svst
- ystem
System Console ©-Mbytes Random Access Memory
2 450-Mbyte RAB1 Winchester Disk Drives
280 Mbyte RA61 Winchester Disk Drive
ULTRIX-32 System, Version 2.2

Genesit Function Set Database

Figure 3. Genesil Silicon Compiler System Configuration
at the Naval Postgraduate School
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There are two previous theses that describe the use of
Genesil [Refs. 5 and 6] and they are highly recommended as
background reading for anyone desiring to use the system.

Once the designer has specified his design, the silicon
compiler synthesizes its layout. Additionally, simulation
models, timing analysis mcdels, and test generation models
can be prepared. The compiler, relying on an extensive set
of 1layout rules and circuit design knowledge including
information on various fabrication processes, quickly
prepares the layout synthesis. The designer can then perform
logic simulation to verify the functional performance of the
device, timing analysis to determine which paths control the
overall system performance, or test generation with the
automatic test generation (ATG) module to determine fault
coverage. Based on the results of simulation and timing
analysis or after examining a 1list of key parameters
resulting from the layout compilation, he can change one or
more parameters and quickly examine what effects the changes
have on the performance of the system. He can even go so far
as to change fabrication techniques.

The silicon compiler is effective because it contains all
of the components necessary for circuit design within one
tool. Timing analysis is effective because the system
"really understands" the circuits it 1is analyzing. The
simulator 1is effective because each element within the

compiler library has been optimized for simulation. This
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reduces computation time. Testing analysis is also very
efficient at this level. The use of the ATG feature at the
compiler level reduces testing time and provides the designer
rapid feedback on the degree of controllability and
observability available within the design. As this thesis
will demonstrate, Genesil has enhanced the basic testability
of most designs by making available, within the compiler
library, test latches and sequence generators to specifically

aid ir DFT.

C. THESIS GOALS AND ORGANIZATION

As stated above in several places, the primary goal of
this thesis 1is to demonstrate Design for Testability
strategies as implemented by Genesil. Two primary circuits
will be demonstrated, the shiftable latch (STL) and the
linear feedback shift register (LFSR). Chapter II will
describe the original design of the 16-bit correlator chip on
Genesil and provide a starting point for the collection of
comparison data on simulation, timing and various key
parameters such as chip size and power consumption. Chapter
III will begin by describing the design of the basic
shiftable test latch used in Genesil. The chapter will also
detail the latch's incorporation into the basic correlator to
enhance testability. Chapter IV will describe the 1linear
feedback shift register used for built-in testing (BIT). It
will also detail the use of the LFSR as a random pattern
generator and show how it contributes to DFT. Chapter V will

14
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discuss the Automatic Test Generation module and show how it
contributes to DFT. Chapter VI will present a summary of the
work completed and the conclusions drawn from this research.
The advantages of the test latches will be examined, as well
as the usefulness of the Genesil silicon compiler in the
implementation of the testability strategy. The Appendix

will provide a brief tutorial on the use of the testability

latches.
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ITI. 16-BIT CORRELATOR TEST CHIP

One of the first research goals was to decide upon a
suitable device upon which to implement the various DFT
strategies. It was not a requirement that a new circuit be
developed; in fact it was desirable to use a chip that had
already been designed. It was, therefore, decided to use an
integrated chip that had been designed by LT William Galinis,
USN and CPT Terence Beck, USA at the Naval Postgraduate
School in Monterey, California [Ref. 7]. The chip is an
implementation of a versatile low-power CMOS 16-bit
correlator. The chip is able to accept data both serially
and in parallel and allows the user to specify which bits
from an incoming data stream are to be compared to a
preloaded reference word. A binary number from O to 16 is
returned. A O represents a perfectly non-correlated signal
(anti-correlation) and 16 represents a perfectly matched
signal (perfect correlation). Values between O and 16
represent a degree of correlation that could be used to
decide acceptance or denial of the input data stream. Such a
device can be used in many applications, ranging from
communications to robotics.

Figure 4 shows the basic correlation equation represented
in discrete form, and Figure 5 shows a basic block diagram of

the correlation function in digital form [Ref. 8:p. 403-404].
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N-1

buylmT) === > x(KT)+ pl(k + m)T)

k=0

Figure 4. Basic Correlation Equation

input Data | Q| 1|2 o o e n
XOR Gates L
>
Reterence Data | O} 112 e o n

Figure 5. Correlation in Digital Form
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Multiplication is implemented by the exclusive-nor (XNOR)
function which will yield a 1 if the two bits correlate and a
0 if they do not. The values are then summed and the result
is a number between 0 and 16, as explained above.

The correlator circuit used as the test platform is
divided into five basic sections: input, xnorreg, combiner,
adder, and output. Figure 6 shows the basic block outline of

the circuit, as it was designed on Genesil.
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The chip was designed in CMOS technology using 1.0, 2.0 and

3.0 micron technology. Micron design rules, commonly used in

industry, give a micron resolution of the minimum feature

sizes and spacings of the masks required for a given process.

In this case, the micron resolution refers to the minimum

feature size for polysilicon. The VTC-CP10B fabrication

process (fabline) used primarily for the test chip is a VHSIC

1.0u4 process (fabline) from VTC Corporation. Other vendors

whose fablines are wused by Genesil include Honeywell,

Motorola, National Semiconductor, and General Electric. The
key parameters obtained describing the chip based on several

different fablines are shown in Table 1.

TABLE 1
COMPARISON OF FABRICATION TECHNIQUES

FABLINE VTC~-CP10B AMI-CT20A GEN-CN30A

AREA (sg.mils) 32695.9 57330.1 111153.3
CORE AREA 17691.5 33987.4 67760.7
AREA PER TRANSISTOR

(sq. mils) 8.681864 15.043322 29.166439
POWER DISSIPATION
(milliwatts @ 61.51 75.37 100.19
5V @ 10 MHz)

20




A. BASIC CORRELATOR CHIP DESIGN

1. Input

The input section or module consists of three identical
modules: the data module (data_in), the reference module
(ref_in), and the mask module (mask_in). Each of the
identical modules 1is a general purpose shift register
consisting of 16 D flip-flop/multiplexer combinations. The
multiplexers allow the register to be loaded in parallel or
serially. The input to each D flip-flop/multiplexer
combination is the output of the previous combination (see
Figure 7). The signal sp_con will control the multiplexer.

The data register contains the input data to be
correlated. The reference register contains the reference
word against which the data register is to be correlated.
The third shift register is the mask register, it serves as
the control for the XNOR register. Placing a "1i" in a
particular position in the mask register will cause the
correlation of the same bit positions in the data and
reference registers. A "0" will disable correlation. In
this way, flexibility has been added to the device by
allowing the user to determine which bits to correlate.

Each register has a simple controller that uses phase b
of the system clock to generate a register clock that
operates the D flip-flop. The controller is made up of an

AND gate with two inputs, phase_b of the system clock and a

21




control signal supplied from off the chip. The result of the
AND gate is used to clock the D flip-flop on phase_b.
2. XNOR Register

The second section is the XNOR register or xnorreg.
It is a random logic block composed of 16 2-input XNOR gates
and 16 2-input AND gates. The XNOR register (Figure 5)
compares the bits in the data and reference registers. As
explained earlier, this corresponds to the multiplication of
the two correlation terms. The output of the XNOR register
will be a "1" in each bit position where the bits match and a
"0" in each position where they do not match or are disabled.
The output of the XNOR gate 1is controlled by the mask

register as indicated in Figure 8.
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3. Combiner
The combiner module consists of four identical
combiner blocks which take 4 inputs from the XNOR register
and produce a 3-bit binary-coded decimal (BCD) digit. The
logic representation of one of the combiner blocks is shown
in Figure 9.
4. Adder
The adder section takes the 4 3-bit BCD digits and
adds them together. The result is a 5-bit BCD number with
the 5th bit being the carry-out bit of the 2nd stage adder.

This block is shown in Figure 10.
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Figure 9. Combiner Block
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5. OQutput

The output section of the correlator chip merely
consists of a latch circuit made from AND gates. The outputs
are made active when a control input, OUTCON, is high. The
purpose of this section is to ensure that the output is not
available until the input data has settled and is correlated

properly.

B. TIMING AND SIMULATION

Genesil provides an efficient environment for timing
analysis and simulation. Timing analysis and simulation are
run independently of each other thereby increasing the speed
of each process. This allows the designer to rapidly
evaluate design alternatives.

The Genesil timing analyzer provides timing information
based on the physical layout and fabrication technique chosen
for the design. After completion of the analysis, a series
of reports are produced that provide detailed information on

o Speed at which the object under analysis will run

o Paths that limit the clock frequency

o Duty-cycle (phase high time) constraints

o Input setup and hold times

o Output delays

o Setup and hold times and signal delays for any internal
nodes

o Path delays between internal nodes [Ref. 9:p. 1-1].

26




Genesil uses a two-phase clocking scheme as the timing

reference for all clocked devices. It derives the timing
characteristics and constraints of the design from switch-
level timing models basad on the physical design as mentioned
above.

Table 2 provides a comparison of the timing information
obtained from the Clock Report for each of the various
fabrication techniques examined. The Clock Report provides
detailed information showing the maximum frequency and the
duty cycle limitations of the design that has been analyzed.
The timing algorithm reports the symmetric cycle time as the
minimum cycle time or twice the longest phase time minus a
clock delay calculation, whichever is larger [Ref. 9:p. 4.5].
As indicated in the table, the smaller the fabrication size,
the faster the cycle time. Using the VTC-CP10B fabrication
technique (in CMOS), the correlator has been analyzed to
operate at a maximum of approximately 31.4 MHz. As the
fabrication techniques grow larger, the circuit slows to
approximately 20.7 MHz.

The Genesil Simulator provides the designer with quick
access to the design in order to test design changes or
verify functionality. The goal of the simulation is to
ensure that the design implementation and the actual layout
generated by Genesil work as intended. To achieve this goal,

the simnlator provides two ievels of simulation. The first
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TABLE 2
COMPARISON OF TIMING VALUES

FABLINE VTC-CP10B | AMI-CT20A GEN-CN30A
PHASE 1 HIGH (ns) 1.9 3.2 6
PHASE 2 HIGH (ns) 15.2 23.6 30.7

MINIMUM CYCLE TIME
(ns) 31.8 49.7 65.8

SYMMETRIC CYCLE TIME
(ns) 31.8 49.7 65.8

level of simulation is performed with functional models
independent of the technology chosen or design layout.

This simulation provides a functional check on the
operation of the circuit and is based strictly on circuit
design and changes in input signals. This functional
simulation uses a demand-evaluation algorithm. This
algorithm simulates only the minimum amount of logic required
to generate a signal value. The user specifies which value
is to be checked and then advances time across a clock edge.
Requesting a signal value generates the demand that the
simulator check that particular net and advancing the clock
generates a demand that functional models dependent on the
clock edge update and check their internal states. This
algorithm runs faster than an event-driven simulation and
requires less memory, hence it is particularly suited to
functional simulation and iterative checking of design
variations.
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Once the designer has verified the correct operation of
the design, he can move to the next level of simulation. The
second level involves the generation of switch-level models
that account for the specific technology and layout chosen
for the design. The switch-level model is implemented by an
event-driven algorithm. This algorithm requires timing
information provided by the Genesil timing analyzer. The
timing analysis is dependent on process and layout, therefore
the switch-level simulation provides an actual simulation of
the physical circuit. Signal changes ripple through the
design and may change many times before settling into a
steady state. Because the signals may change a number of
times before settling and many signals are not used at a
particular time, the event-driven algorithm uses more memory
and is much slower than the demand-evaluation algorithm. If
everything 1is in order, the switch-level simulation should
run correctly for the same set of vectors used for the
functional simulation. If not, the errors can be traced
using special GSLMENU commands and, if necessary, additional
test vectors <can be <created to provide additional
initialization. All major sections of the correlator chip
were simulated on both levels.

The simulator provides the user with both interactive and
batch simulation. Interactive control allows the user to
directly stimulate each input and manually advance time.

This 1is ideally suited for verifying functions quickly.
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However, it requires that the designer check each output
individually to ensure that it is correct. An example of
interactive simulation is shown in Figure 11. In this
example a value is loaded into the data register by binding
the values of the input pins, par(15.0], to a binary value of
0111011011101100. This value is then loaded into the data
register by advancing the clock one cycle and compared to a
value in the reference register, which has already Leen
initialized to a value of 0101010101010101. The output
value, seen on cout(4:0], is 01000 which indicates that there
were eight matches in the comparison between the value in the
data register and the reference register. Manual simulation
used in conjunction with the traceobj command will generate a

test vector file that can be used later to repeat the same

sequence of tests.

CORRELATOR _SIMULATION

TIMEPNT par dfout ) rfout cout
-1 zzzzzzzz2zzzzzezzz iiiiiiiiiiiiiiii iididriiidiiiiiii iiiii
-1 HHHHHHHHHHHHHHHHY iiiididiidiiiiidiii diiiddiddididiiiid iiiii
0 HHHHHHHHHHHHHHHH iiiiidididiidiiiii diidddijiiidiiiii iiiii
10 HHHHHHHHHHHHHHHH iiiiiijidiiiiiiii iidididddidiiiiii iiiii
10 LHLHLHLHUHLHLHLH ifiiiifdiidiiiiii iidiiidiiididiiiiai iiiii
20 LHLHLHLHLHLHLHLHY iiiiijjiiiiiiiiii 0101010101010101 iiiii
20 LHHHLHHLHHHLHHLL iiiiiiiijiiiiiiii 0101010101010101 iiiii
30 LHHHLHHLHHHLHHLL 0111011011101100 0101010101010101 01000
40 * LHHHLHHLHHHLHHLL*0111011011101100*0101010101010101#*01000

Figure 11. 1Interactive Simulation of Correlator Chip
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Batch simulation uses check functions and test vector
files. Test vector files and check functions run faster than
the interactive simulation, will generate an error message if
the expected result does not agree with the actual result,
and provide a standard set of vectors for simulation. Test
vectors, in addition to being created with the traceobj
command as explained above, can also be written using MASM, a
macro-assembler that allows the user to define and use an
assembly language customized for the circuit to be simulated
(Ref. 10:p. 5-11]. The file can be written in either source
code or object code. Examples of each are shown in Figure
12. Figure 12a is the object code written to test the
combin0 section of the combiner module. The object code
consists of a heading that includes the inputs and outputs of
the circuit to be simulated and a data sccticn that lists the
input vectors and output vectors. A simulation that produces
an output other than that specified in the vector file will
generate an error. Figure 12b shows the source code written
to simulate the parallel operation of the data_in module.
The source code follows a specific format that allows the
designer to write the functions that he desires to simulate.
An object code file is then generated and the circuit is

simulated as described above.
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CODEFILE

INPUTS xout{3:0};

OQUTPUTS clout{2:G];

CODING (ROM)

5 <0000 >000;

10 <0001 >001;
15 <0010 >001;
20 <0011 >010;
25 <0100 >001;
30 <0101 >010;
35 <8110 >010;
40 <0111 >011;
345 <1000 >001;
50 <1001 >010;
55 <1010 >»010;
60 <1011 >011;
65 <1100 >010;
70 <1101 >011;
75 <1110 >011;
80 <1111 >100;

(a)

$define Sig Signal
Sdefine In Input
Sdefine Out Qutput
sdefine Pos Position
$define E Expression
$define rep4d(a) a a a a

Fields {
par (Pos = 0, In,Length=16 ) (}
ser_0 (Pos = 16, In,Length=1, Sticky) {}
sp _con (Pos = 17, In,Length=1, Sticky) (]}
datcon (Pos = 18, Iu,lLength=1, Sticky) {}

/* Qutput Fields */

dfout (Pos = 0, Out,Length=16, Shift = 10) {}
}

Templates (

serial = sp_con\l;

parallel = sp_con\0;

on = datcon\l;

off = datcon\0;

load [] = par\@0, dfout\@0;
}

Lineaction:: E(.=.+10), E(temp++);

Data {

/*parallel operation*/
E(temp ~ 0), parallel, on,
load [temp];

load {temp];

load (temp];

load (temp]

load [temp<<1];

rep4d(repd (rep4(load [temp<<l];)))
rep4 (rep4(load [temp<<2];))
}

/*end of source file*/
(b)
Figure 12. Simulation Techniques Using Object
and Source Code
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Check functions are written in a simulation language
called GENIE. GENIE (Genesil Interface Extension) 1is an
interpretive language used as a command language 1in
application programs. It has many similarities to C, using
similar syntax and many of the same control structures [Ref.
11]. GENIE 1is an alternative to using test vectors. The
test vectors generated by the check functions are captured by
the traceobj command. An example of a check function is
given in Figure 13. This function was used to verify the

operation of the adder block.

/* THIS FILE WILL TEST THE ADDER MODULE *x/
func addtest {

vars a b ¢ d res

for a 0 4 {

for b 0 4 {
for ¢ 0 4 [
for 4 0 4 {
sn clout (da
sn c2out (@b
sn c3out (ac
sn c4out (ad

set res (+ a b c q)
checkatr 10 out (@res
}

[

Figure 13. Check Function Simulation of Adder Block
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The Genesil VLSI implementation of the correlator chip
using the 1lu technology resulted in a chip with a total area
of 32,695.9 square mils and a total power dissipation of
61.151 milliwatts. This could be compared with the MOSIS 3pu
implementation of the correlator chip which had a total area
of 48,484.096 square mils. As expected, the Genesil
implementation of the chip is smaller, mainly due to the
smaller feature size. However, the Genesil implementation of
the 2u feature size is larger than the MOSIS chip, an area of
73,038 square mils compared to 48,484.9 square mils. This
demonstrates one of the disadvantages of silicon compilation,
the design might not be optimized for size. A full custom
tool, such as MAGIC, can generally produce a smaller design
if desired. A breakdown of some of the key parameters of the
various components of the correlator chip is shown in Table
3. A routing diagram showing the 1layout of the various
modules and blocks that make up the correlator chip is shown

in Figure 14.
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TABLE 3
KEY PARAMETERS FOR CORRELATOR CHIP

# OF AREA POWER DISSIPATION
MODULE TYPE TRANS. | (sq. mils) |(mW @ 5V @ 10 MHz

CORLAT_CHIP1 CHIP 3766 32695.9 61.51
ADDER RANDOM_LOGIC 300 169.1 1.9

CLOCK PAD 24 582.2 4.8

COMBINER MODULE 480 439.0 3.44
DATA_IN MODULE 742 2464.8 6.25
DATAOUT PAD 90 742.4 21.4

DATCON PAD 15 148.6 .37
INPUT PAD 240 2375.5 5.9

MASK_IN MODULE 742 2496.0 6.25
MSKCON PAD 15 148.6 .37
OUTCON PAD 15 148.6 .37
OUTPUT RANDOM_LOGIC 30 16.5 .26
REFCON PAD 15 148.6 «37
REF_IN MODULE 742 2432.0 6.25
SERDATIN PAD 15 148.6 .37
SERMSKIN PAD 15 148.6 «37
SERREFIN PAD 15 148.6 .37
SP_CON PAD 15 148.6 .37
XNORREG RANDOM_LOGIC 256 123.3 2.1
VDD PAD 0 148.6 0

VSS PAD 0 148.6 0
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III. SCANPATH SIGN FOR ) TRATEGY

A. SCANPATH DESIGN

The first Design for Testability strategy investigated
was the Scanpath technique. The Scanpath technique strives
to enhance the observability and controllability of internal
nodes that are inaccessible from the periphery of the system.
As mentioned earlier, observability refers to the primary
outputs of the design and controllability refers to the ease
by which a specific signal can be produced at some internal
node by applying a signal to the primary outputs of the
design. To increase the observability and controllability
scanpaths are added to the design. The scanpaths serve to
partition the design into smaller subsystems that are
separately more testable than the design as a whole. Figure
15 shows how a generic circuit might be partitioned by a
scanpath into individually testable units [Ref 12:p. 374].

The Genesil silicon compiler implements the scanpath
using the shiftable test latch in its basic configuration.
The STL consists of a data latch in parallel with two serial
register latches. The designer builds registers of STLs that
are connected via serial inputs and serial outputs.
Consequently, the number of peripheral connections are kept
at a minimum; only the serial input of the first register and
the serial output of the 1last register are required for
vector manipulation.
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Figure 15. Generic Circuit with Scanpath

The STL enhances the controilability of the design by
overriding the contents of the data latch. Internal nodes
can be set to arbitrary patterns by shifting a user-defined
test vector into the data latch via the serial register. The
test vector might be an arbitrary set of bits or a specific

vector created by an automatic test vector generation
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program. In this thesis, the Genesil Automatic Test
Generation (ATG) program was used to generate and evaluate

test vectors and fault coverage. The ATG program is

discussed in Chapter 5. The STL enhances observability by

capturing the states of the internal nodes and shifting the
resulting patterns out of the circuits via the serial

register.

B. THE SHIFTABLE TEST LATCH

The basic STL consists of three latches and five control
gates as shown in Figure 16. The latch labeled D forms the
data latch and the latches labeled A, B, F, S, and LOAD
govern the flow of data between the data latch and the serial
register. To build a test register, the STL's are cascaded.
The TOUT connection of each STL is routed to the TIN
connection of the next-most-significant STL. By connecting
strings of registers together and combining the control
signals for each separate test register, a large number of
test latches can be used with a minimum overhead in
additional pad requirements and external circuitry. Only the
TIN of the first STL, the TOUT of the last STL, and the

control signals require pads.

39




TOUT

OIN

TIN

Figure 16. Shiftable Test Latch

The basic STL performs different functions in response to
the control inputs. During normal operation, the data latch
(Latch D) serves as a storage element and the LOAD signal is
driven by phase b of the systems clock. The force operation
requires that the test vector be shifted serially ;hto the
shift register section (Latches S1 and S2). It is then

loaded in parallel into the data latch section and applied to
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the circuit. The sample operation samples the state of the
data latch. Its contents are loaded in parallel into the
shift register and then shifted serially out of the circuit.
The shift function shifts data in the shift register one bit
position. There is also a swap function. The swap function
allows data to be exchanged between the data latch and the
shift register. This allows a test vector to be shifted into
a circuit as sampled data is shifted out [Ref. 13:pp. 15.2-
15.57.

There are three different implementations of the STL when
it is created as random logic block. Random logic blocks are
used for simple small-scale 1logic functions. In the
unclocked implementation, the control signals are driven by
external strobes that are usually generated off-chip. As a
result, the designer must ensure that the control signals are
generated in the correct sequence and are properly timed.
The data latch is driven by a two-phase system clock. The
second implementation is the globally clocked model. The
control signals mentioned above are combined by additional
logic within the block into two signals named M1 and M2.
These two signals produce properly timed sequences of the
control signals A, B, F, and S. The timing is defined
relative to the system clock used to load the data latch.
The final implementation of the STL is the 1locally clocked
implementation. This model uses a local two-phase clock that

is independent of the system clock. The control signals M1

41




and M2 are defined relative to the 1local clock and are
derived as mentioned above. The 1local clock might be
generated off-chip or by additional circuitry on the chip.
The testability latches can also be configured using the
parallel datapath block available in Genesil. Parallel
datapaths are blocks that are specifically tailored for
parallel data and control operations such as arithmetic
functions and register~file address generation [Ref. 14:p.
1.1]. The same implementations are available in the parallel
datapath as were available in the random 1logic blocks
discussed above. There are two additional DFT
configurations, generator and signature analyzer, available
as parallel datapaths. They will be discussed in Chapter 1IV.
Table 4 shows a comparison of area, humber of
transistors, and power dissipation for a 16-bit testability
register using each method of implementation. As can be seen
from the table, the clocked modes of operation are larger due
to the addition of the control circuitry. Also note that the
parallel datapath implementations are much larger than the
random logic implementations of the testability registers.
Parallel datapath blocks require the addition of special
interface blocks on input and output. Figure 17 shows the
VLSI layout of a 16-bit globally clocked test latch. The
control section is on the left side of the layout and the 16
STLs are designed to fit together side by side. Contrast

this to Figure 18 which shows the layout of a 16-bit globally
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clocked test latch implemented as a parallel datapath. The
blocks in the datapath are arranged in a horizontal row with
each block of equal height. The height is determined by the
width of the datapath which, in this case, is 16. One of the
drawbacks of silicon compilation as a design methodology is
that the designer has no control over the layout at a level
lower than the block level. Once the designer has specified
the object type and completed the necessary forms, the layout

of the block is done automatically.

TABLE 4
16-BIT TESTABILITY REGISTER COMPARISON

IMPLEMENTATION AREA # OF POWER DISSIPATION
(sq. mils) [TRANSISTORS| (mW @ 5V €@ 10MHz)

UNCLOCKED RANDOM
LOGIC 245.8 449 3.3

LOCALLY CLOCKED
RANDOM LOGIC 257.5 511 3.2

GLOBALLY CLOCKED
RANDOM LOGIC 257.5 511 3.2

UNCILOCKED PARALLEL
DATAPATH 425.9 617 4.2

LOCALLY CLOCKED
PARALLEL DATAPATH 429.6 679 4.4

GLOBALLY CLOCKED
PARALLEL DATAPATH 429.6 679 4.4

43




I931ST39Y 1S9 wopuey 3IT1g-9T

*LT ®@an3diyg

-




Figure 18.

16-Bit Parallel Datapath Test Register
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C. IMPLEMENTING SCANPATH DFT INTO THE CORRELATOR CHIP

The initial DFT approach using Scanpaths was to build a
16-bit register out of STLs and break up the datapath in the
correlator chip by putting one or more registers within the
data flow. It was quickly decided that the chip was not
complex enough to require more than one such register. The
problem then became where to place the testability register
in order to most increase the observability and
controllability of the design.

In order to develop some basis for deciding where to
place the register, the fault coverage of the correlator
without DFT was determined. The ATG program evaluates the
testability of a design and generates a specific set of test
vectors designed to provide the optimum amount of fault
coverage. Once the set of vectors has been determined, the
set may be saved and after the design has been returned from
the manufacturer, the test vectors can be used to detect any
physical flaws.

The 1initial fault coverage results for the basic
correlator design without any DFT is shown in Table 5. The
fault coverage was 92.47% for the entire circuit. The $dummy
block is a dummy module used by the ATG program to contain
any artificial constructs it creates to carry out the fault
evaluation. In order to achieve the specified fault
coverage, 605 test vectors were generated. This took a total

CPU time of 14 minutes and 28 seconds. It was discovered
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that continuing runs of longer time periods did not yield
higher coverage. The ATG program will run for a specified
amount of time or until achieving a specified degree of fault
coverage. There are some internal limits in the program that
will cause it to terminate testing but, generally, programs
can run for many hours. This means that in order for a fault
to be detected, assuming it is one of the faults covered, the
set of test vectors will have to be applied, one at a tinme,
to the circuit. If that fault exists, it will be detected
when the output vectors are compared toc the known correct
test results. If one or more of the output vectors do not
agree, the fault is detected. The location of the fault is

not determined, only its existence.
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TABLE 5
ATG FAULT COVERAGE RESULTS FOR BASIC CORRELATOR DESIGN

FAULT
DEVICE MODULE |VECTORS TESTS COVERAGE %
BASIC CORRELATOR 605 1215 of 1314 92.47
ADDER 154 of 170 90.59
COMBINER 160 of 192 83.33
DATA_IN 242 of 259 93.44
MASK_IN 242 of 259 93.44
OUTPUT 15 of 15| 100
REF_IN 242 of 259 93.44
XNORREG 112 of 112| 100
$DUMMY 48 of 48 100

Based on the initial set of results, the test register
was placed between the xnorreg and the combiner module as
shown in Figure 19. It is important to point out that the
only analysis done was to look at the information given in
Table 5 and determine that the combiner/adder section of the
design seemed to be the least testable and a register placed
at the input to this section of the design might help to
increase the testability. As can be seen in the test results
shown in Table 6, the inclusion of the register in this
location did not increase the testability of the design. It
did, however, reduce the number of test vectors required to
get the same amount of coverage. As a result, a more
detailed analysis was done using the ATG program.

48




|# ubisaQ yiedq ueos ‘gl ainbiy

0ULNDD
ui} TV VYIS
4315193y
HONX
43151934 SV NINSPRITS
WULNOO _
1NdLNo inojul NOOMSN
| ,
— S1934 HO1 3l
.A_WE 75 H31S193Y d
QN0 | ) ) Imm—— _“.I
(v)ino ] mnmu%n_m Mo ol ThOX Tom 43151934 30N34343Y z_wﬁ’w.m_
(8)ino | NOO43Y
(9thno R
o018 1Ndino l_
ViV
[Jﬂ H31$193Y4 vivqg | ﬂ%ﬁw

FINAOW H3NIGWOD ﬁ
inoj}

49




TABLE 6
THE ATG FAULT COVERAGE RESULTS FOR SCAN DESIGN #1

FAULT
DEVICE MODULE |VECTORS TESTS COVERAGE %
SCAN DESIGN #1 207 1255 of 1354 92.68
ADDER 154 of 170 90.59
COMBINER 160 of 192 83.33
DATA_IN 242 of 259 93.44
MASK_IN 242 of 259 93.44
OUTPUT 15 of 15 100
REF_IN 242 of 259 93.44
XNORREG 112 of 112 100
$DUMMY 88 of 88 100

The ATG program, via the ANALYZE command, provides
specific information about the areas of the circuit that were
or were not tested. The circuits can be determined
hierarchically to determine which blocks had good and poor
coverage and to determine which specific tests were or were
not instantiated [Ref. 15:p. 5.2]}. A fault is said to be
instantiated if it can be observed at the primary outputs of
the circuit.

Figure 20 shows one of the combiner blocks discussed in
Chapter 2. By using the ANALYZE function after a new set of
test vectors was generated reflecting the addition of the
testability register, it was discovered that a certain test
pattern, in this case a logic 1 applied at both inr: ts, was
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not instantiated at the AND gate labeled AND5. The reason is
that the test vector required at the primary inputs to
produce the test pattern at the AND gate also produced a
logic 1 input to the OR gate 1labeled ORO. The 1logic 1
overrides the signal coming from the AND gate. The result is
that the specific AND test is never instantiated and the
fault cannot be determined. The nodes are controllable and
can be set to the required pattern but the desired result, a
logic 0 for a fault-free circuit and a logic 1 for a faulty
circuit, cannot be observed at the primary outputs due to the
overriding logic 1 at the OR gate.

XORA1 anO8 XORS

D e— ‘

ANO 4 | XORa

XORO

| | ANDO
|
|

Figure 20. Combiner Block
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In order to make the combiner module more observable, it
was redesigned so that the OR gate mentioned above could be
made more controllable. The combiner module was split into
two parts. The split is shown by the dotted line in Figure
20. The new DFT design is shown in Figure 21 and the fault
coverage results are shown in Table 7. The table compares
the fault coverage for each of the scan designs mentioned and
the basic correlator chip without any DFT. Note that
although the overall fault coverage only increased by 2.6%,
the adder and combiner modules have increased by 5.88% and
16.67%, respectively. The design is fairly small, so the
initial fault coverage is expected to be high. The
significant point here is the 1large increase in fault
coverage in the adder/combiner area brought about by
redesigning the circuit to incorporate DFT. Without the
addition of the test vector register, the fault coverage
could not be increased. This 1is important for critical
designs where failure in the field, if not detected, could be
catastrophic. Additionally, only 133 test vectors were
generated. This is a reduction of 78% from the design
without any DFT. Extrapolate the savings into reduced test
time and increased efficiency of testing and the use of DFT
becomes significant.

The tradeoff in the above design is that a 32-bit test
register is now required. The STL can only be expanded to 16

bits in random logic so two 16-bit registers have to be
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combined or a single 32-bit register can be constructed using
the parallel datapath block. Some of the key parameters for

these options are shown in Table 8.
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TABLE 7

FAULT COVERAGE COMPARISON FOR SCAN DESIGNS

—— -y

£\ ad

DEVICE MODULE |VECTORS TESTS COVERAGE %

BASIC CORRELATOR 605 1215 of 1314 92.47
ADDER 154 of 170 90.59
COMBINER 160 of 192 83.33
DATA_IN 242 of 259 93.44
MASK_IN 242 of 259 93.44
OUTPUT 15 of 15 100
REF_IN 242 of 259 93.44
XNORREG 112 of 112 100
$DUMMY 48 of 48 100

SCAN DESIGN #1 207 1255 of 1354 92.68
ADDER 154 of 170 90.59
COMBINER 160 of 192 83.33
DATA_IN 242 of 259 93.44
MASK_IN 242 of 259 93.44
OUTPUT 15 of 15 100
REF_IN 242 of 259 93.44
XNORREG 112 of 112 100
$DUMMY 88 of 88 100
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TABLE 7 (cont.)

SCAN DESIGN #2 133 1310 of 1378 95.07
ADDER 164 of 170 96.47
COMBINER 1 112 of 112 100
COMBINER 2 80 OF 80| 100
DATA IN 242 of 259 93.44
MASK_IN 242 of 259 93.44
OUTPUT 15 of 15| 100
REF_IN 242 of 259 93.44
XNORREG 112 of 112 100
$DUMMY 101 OF 112 90.18

TABLE 8

32~BIT REGISTER COMPARISON

AREA # OF POWER DISSIPATION
(sq. mils) | TRANSACTIONS | (mW @ 5V @ 10MHz)
PARALLEL :
DATAPATH 769.9 1271 8.1
RANDOM
LOGIC 569.3 1068 6.3
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D. STL AND CLOCKING OPTIONS

Genesil uses two-phase non-overlapping clocks derived
from a single system clock as the reference for all clocked
devices that are logically associated with that system clock
[Ref. 9:p. 2.1]. The STL, as described above, can be either
clocked by the global system clock or the serial register
latches can be clocked by a separate local clock. Separating
the clocks makes it possible to halt the normal operation of
the chip and scan out the current values of the nodes covered
by the STLs. The use of a local clock also allows test
vectors to be scanned in more rapidly, thereby reducing time
lost to testing. Table 9 shows the difference in clock times
for globally and 1locally clocked DFT designs. Locally
clocked STLs provide better performance but will require
additional 1logic circuitry to produce the two test clock
phases. If the clock signals are produced on-chip, a single
additional input must be provided and the two phases can be

produced with a clock processor block. The control signals

are identical for both globally and locally clocked STLs.




TABLE 9
COMPARISON OF CYCLE TIMES FOR STL IMPLEMENTATION
OF 16-BIT TEST REGISTER

MINIMUM SYMMETRIC
DEVICE CLOCK CYCLE TIME CYCLE TIME
BASIC
CORRELATOR SYSTEM 11.1 ns 16.3 ns
WITH GLOBALLY
CLOCKED STL SYSTEM 23.0 ns 23.0 ns
WITH LOCALLY SYSTEM 16.1 ns 16.3 ns
CLOCKED STL LOCAL 12.1 ns 12.2 ns
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IV. BUILT-IN TES SI1G OR_TES STRA

A. BUILT-IN TEST DESIGN

The second Design for Testability strategy investigated
was the Built-in Test (BIT) technique. The Scanpath
technique discussed in the previous chapter was aimed at
enhancing the contrellability and observability of the
internal nodes of the circuit. The test vectors used to
check the circuit are generated by a test vector generation
program and then applied and checked by separate test
equipment. As the designer requires more detailed testing
and the circuit to be tested become more complex, the cost of
testing increases. Some other problems associated with using
the Scanpath DFT technique include the amount of time
required to generate the set of vectors, the size of the set
of test vectors becoming too large to be easily handled by
the test equipment, and the time taken to apply each vector
[Ref. 16:p. 21].

Built-in test techniques attempt to facilitate testing by
moving some or all of the test functions onto the chip. The
test vectors are generated and can also be analyzed by
special circuitry included as part of the functional design.
The devices used in this part of the research include a
linear feedback shift register (LFSR) to generate the test
vectors and a signature analyzer to evaluate the response.
The BIT technique has some of the same drawbacks as does the
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Scanpath technique -- they both take up some additional area
and add some path delay. The compensation is that an outside
tester is no 1longer required and testing time is reduced.
Another advantage to Built-in Test is that the circuit can be
tested at speed of normal operation and while the circuit is
in normal use.

The linear feedback shift register and signature analyzer
are implemented as parallel datapath modules by the Genesil
silicon compiler. The testability registers can be
configured as LFSRs or signature analyzers or both. The STL
signature configuration uses the same circuitry and does the
same work as the LFSR configuration. It also contains
additional 1logic that allows the designer to combine the
sequence of values received from other blocks within the same
dataflow and create a signature that is wunique to that
sequence of values. If the signature does not agree with a
correct value (determined beforehand via simulation) a fault
has been detected. Figure 22a and 22k show the layout of a
1l6-bit generator and signature parallel datapath. Note the
added dimensions of the control section, located at the
bottom of the module, of the signature block. This is due to
the added circuitry. Also it is easy to determine the
vertical nature of the parallel datapath layout. The control
section is at the bottom and top, the datapath consisting of
the 16 STLs is located in the center, and the interfaces are

arranged on the right and left sides of the module. Table 10
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shows a comparison of 16-bit test register implementation

using generator and signature configurations.

Figure 22a. 16-Bit Generator Layout
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Figure 22b. 16-Bit Signature Layout
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TABLE 10
16-BIT TEST REGISTER COMPARISON OF GENERATOR AND
ANALYZER CONFIGURATION

IMPLEMENTATION AREA # OF POWER DISSIPATION
(sq. mils) [TRANSISTORS |(mW € 5V @ 10 MHz)
VECTOR
GENERATOR 470.0 679 4.3
SIGNATURE
ANALYZER 509.4 835 43.6

Figure 23 shows the general concept behind the DFT
strategy implementing Built-in Test. In the first part of
the test the STL register on the 1left acts as a LFSR and
generates a string of vectors that become tests for logic
block 1. The results of the tests are fed through the second
STL register which is configured as a signature analyzer.
After a certain number of tests have been generated, the
signature can be shifted out of the STL register and checked
for any faults. Then, the STLs can be reconfigured via the
control inputs so that their configurations are reversed. 1In
the second part of the test, the test patterns are generated
by the second STL register, fed through logic block 2 and the
resulting signature is produced by the first STL register.

[Ref. 17:pp. 392-393]
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EJ m—] Logic ] pr—r g_; p— | 0QiC #2
SIGNATURE GENERATOR

Figure 23. General DFT Built-in Test Strategy

B. LINEAR FEEDBACK SHIFT REGISTERS

The set of test vectors produced by the LFSR, as
implemented by Genesil, is a set of pseudorandom vectors.
They are called pseudorandom because the vector set is
produced by a known circuit, however, the set exhibits many
properties of random signals. These characteristics are
given a detailed discussion in Golumb (Ref. 18]. The LFSR
consists of a series of delay elements such as flip-flops
with no external inputs and feedback paths through XOR gates
as shown in Figure 24. The R input determines whether data
is shifted into the lowest significant bit from the serial

input of the XOR feedback path.
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Figure 24. Genesil LFSR Configuration
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The arrangement of the XOR gates within the feedback is
determined by a constant called the LFSR polynomial. This
constant determines the 1length of the LFSR pseudorandonm
vector sequence. For most testing applications, the set of
test vectors should be as long as possible. The longest
sequence, called a maximal length sequence, results if the
constant determining the feedback chain is a primitive
polynomial. 1In general, the maximal length sequence of an n-~
bit LFSR contains 2! - 1 vectors [Ref. 2:p. 134]. Peterson
[Ref. 19] provides extensive coverage of linear feedback
shift registers and vector sequences. Genesil provides the
designer with a default polynomial to meet the criteria for
maximal length sequences for datapath widths from 4 to 34
bits wide. The designer can change the value of the
polynomial if an application requires a specific polynomial.

Figure 25 shows the Genesil form for the generator
function of a 4-bit test register. The polynomial constant
is entered as a hexadecimal number. In the LFSR the most
significant bit always starts the chain of XOR gates so the
highest order coefficient is always one. The lowest bit
always feeds into the multiplexer controlled by the R input
and is also always one [Ref. 14:p. 24.14]. Figure 26 shows
the feedback chain for the 4-bit LFSR and the sequence of

values generated by the random function.
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TST_LAT Functional Specification

Parallel Datapath:

DATAPATH Block Editor

Block #1

Name: >tstlatch
Phase X: PHASE A PHASE B
Shift register: BASIC GENERATOR SIGNATURE
Control signals: UNCLOCKED LOCAL GLOBAL
Polynomial: > 0x13
Mode: TRANSPARENT GATED
Sample STDIN 1 STDIN_2

Connectors:
Load >load (LD)
Tin >tin (TIN)
Tout >tout {TOUT)
M1: >ml (M1)
M2: >m2 (M2)
M3: >m3 (M3)

Figure 25. LFSR Genesil Form
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XOR

tin

FF #1 FF #2 FF #3 FF #4 tout

m—Eux

LFSR LFSR

TIMEPOINT OUTPUT TIMEPOINT OUTPUT
0 iiii 10 0110
1 0001 11 1100
2 0011 12 1001
3 0111 13 0010
4 1111 14 0100
5 1110 15 1000
6 1101 16 0001
7 1010 17 0011
8 0101 18 0111

Figure 26. Feedback Chain for 4-Bit LFSR and Random Vectors

C. SIGNATURE ANALYZERS

The signature analyzer uses the LFSR principles in its
operation. In the Genesil implementation, the signature
analyzer is essentially an LFSR with its input equal to the
output of the circuit or subcircuit to be tested. The

particular technique employed is that of a parallel signature
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analyzer. In this technique, the outputs of the circuit
being tested are connected to the LFSR via XOR gates added
between stages in the test register as well as connecting the
circuit output to the first LFSR stage [Ref. 2:p. 145].
Figure 27 shows the STL signature configuration for an
arbitrary bit position. Note the input mux with additional
control inputs of M4 and MS. In the globally and locally
clocked options the M4 and M5 inputs are generated internally

and the device has the same number of external connections as

Tout Fdbkin

S2 XOR

A
DIN >— D

Load

pout

S1

A Fdbkout

M4
MUX .=

I
RL‘ FALSE

X0

Tin

Figure 27. STL Signature Configuration

69




does the generator function. The XOR gate at the input mux
combines the present data value with the value of the
preceding shift register stage thus producing a bit-wise
checksum value [Ref. 14:p. 24.21].

After a certain number of clock periods, the value in the
data latch is a unique value created by the combination of
output responses and the XOR feedback chain configuration.
If that value differs from the correct value obtained during
simulation tests, a fault has been detected. It is obviously
important that the LFSR generating the test vectors be
intialized to the same starting value for each +est and each
test run for the same number of clock cycles so that the
tests can be repeated. Table 11 shows the inputs and outputs
of a simple 8-bit signature analyzer. Note that the designer
could design a simple comparator or memory to examine any
number of the outputs for a correct response given a certain
number of block cycles, thereby moving the analysis function
completely onto the chip. The input vectors for this test
were produced by an 8-bit LFSR using the default value for
the polynomial constant. Each test was run for 30 clock
cycles. A maximal length sequence for the LFSR will produce

255 vectors.
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TABLE 11
SIGNATURE SIMULATION RESULTS

TIMEPOINT LFSR OUTPUT SIGNATURE ANALYZER OUTPUT

31 1110010 11100100

32 11001000 11100100

33 10010000 11100100

34 00100001 00101100 - SIGNATURE
35 01000010 01000010

64 00110001 00110001

65 01100010 00110001

66 11000101 00110001

67 10001010 01010011 - SIGNATURE
68 00010101 0010101

97 01101110 01101110

98 11011101 01101110

99 10111011 01101110
100 01110111 10110011 - SIGNATURE
101 11101110 1101110
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This technique is also called compact testing because the
output response, after passing through the signature
analyzer, can be reduced to a small number of bits. One
drawback to the signature analysis technique is due to a
phenomenon called aliasing. It is possible for a fault to go
undetected if its output response produces a signature that
is identical to that of a fault-free device. This leads to a
loss of fault coverage. Research on this phenomenon has not
yet led to the discovery of a simple relationship between the

fault coverage and the aliasing phenomenon [Ref. 2:p. 144].

D. IMPLEMENTING BUILT-IN TEST DFT INTO THE CORRELATOR CHIP
The BIT strategy, as opposed to the Scanpath strategy,
attempts to facilitate testing by placing the test functions
on the chip. Initially, designs were developed that
substituted a LFSR where a test register was incorporated in
the scanpath designs. This is of limited utility because the
LFSR does not produce a custom set of vectors. It requires
many more vectors to get the same amount of fault coverage
that is achieved with the scanpath using a vector set
generated by the ATG program. If the LFSR replaces the test
register located in the interior of the circuit in Scanpath
Designs #1 and #2, it will not provide any greater fault
coverage than did the test registers. The advantages offered
by the LFSR are somewhat diminished because a vector set must
still be generated for the parts of the circuit located in
the front of the LFSR. The LFSR can act as a basic test
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register and capture the results of test vectors applied at
the inputs to the data registers but the substitution of the
LFSR does not enhance the testability of the circuit. The
conclusion drawn is that the LFSR 1is better placed at the
front of the circuit where it can generate a stream of
vectors at system speed that can be used to test the circuit.
This is the approach taken in implementing the BIT strategy
into the basic correlator chip.

The first BIT design added a 23-bit LFSR after the
primary inputs of the basic correlator chip as shown in
Figure 28. In this position, the LFSR can generate test
vectors that will include the data bits and the various
control inputs. The pseudorandom test vectors propagate
through the circuit and the output responses appear on the
primary outputs. The first design did not use a signature

analyzer.
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When the circuit is to be tested, an initial vector is

loaded into the LFSR. This is called the seed vector and is

used to initialize the random vector generator. The control

inputs are initially set to the sample function discussed in
the previous chapter so that the seed vector placed in the

data latch is shifted into the serial register. The control

inputs are th